International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows:"a"maps to".-","b"maps to"-...","c"maps to"-.-.", and so on.

For convenience, the full table for the 26 letters of the English alphabet is given below:

[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]

Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, "cab" can be written as "-.-.-....-", (which is the concatenation "-.-." + "-..." + ".-"). We'll call such a concatenation, the transformation of a word.

Return the number of different transformations among all words we have.

Example:
Input:
 words = ["gin", "zen", "gig", "msg"]

Output:
 2

Explanation: 

The transformation of each word is:
"gin" -
>
 "--...-."
"zen" -
>
 "--...-."
"gig" -
>
 "--...--."
"msg" -
>
 "--...--."

There are 2 different transformations, "--...-." and "--...--.".

Note:

  • The length of words will be at most 100 .
  • Each words[i] will have length in range [1, 12] .
  • words[i] will only consist of lowercase letters.

class Solution {

public:

int uniqueMorseRepresentations\(vector<string>& words\) {

    vector<string> d = {".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.."};

    unordered\_set<string> s;

    for \(auto word : words\) {

        string code;

        for \(auto c : word\) code += d\[c - 'a'\];

        s.insert\(code\);

    }

    return s.size\(\);

}

};

results matching ""

    No results matching ""